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Abstract—The trend of using accurate models such as physics-
based FET models, coupled with the demand for yield optimiza-
tion results in a computationally challenging task. This paper
presents a new approach to microwave circuit optimization and
statistical design featuring neural network models at either device
or circuit levels. At the device level, the neural network represents
a physics-oriented FET model yet without the need to solve device
physics equations repeatedly during optimization. At the circuit
level, the neural network speeds up optimization by replacing
repeated circuit simulations. Thk method is faster than direct
optimization of original device and circuit models. Compared to
existing polynomial or table look-up models used in analysis and
optimization, the proposed approach has the capability to handle
high-dimensional and highly nonlinear problems.

I. INTRODUCTION

THE DEMAND in microwave industry for manttfactura-
bility and fast design cycles creates the need for statistical

design techniques. Yield analysis and optimization, which
take into account the manufacturing tolerances, model un-

certainties, variations in the process parameters, etc., have

become widely accepted as indispensable components of the
circuit design methodology [1]–[5]. On the other hand, for
microwave circuit design the effectiveness of modem CAD

methods relies heavily on accurate models of active and pas-
sive elements. Models such as physics-based models (PBM)
for active devices, e.g., [6], [7], become necessary. The use
of such accurate models, however, is at the expense of much
increased computational cost. Combining yield optimization

and physics-based modeling results in a computationally very
intensive task.

Standard optimization and statistical design approaches re-

quire repeated circuit simulations. Since each circuit simula-
tion involves a CPU-intensive procedure to solve the physics-

based equations, such existing optimization methods are more
oriented towards off-line computations. They are not suitable
for practical interactive design where designers may need to
reoptimize the circuit after modifications in specifications, or
even circuit topologies. To address this problem, two types
of approximations have been previously used. 1) Multidimen-
sional polynomial (or its variants such as splines or response

surface) models, e.g., [3], [4], [8]–[10], to approximate and
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replace original simulations during optimization. However,

this approach can handle only mild nonlinearity in high-

dimensional space. [t typically requires model building or

updating during optimization, consuming valuable on-line

CPU time. 2) The look-up table approach, e.g., [11]–[14], to
approximate and to replace accurate device or circuit simula-

tions. However, the size of the table grows exponentially with
dimension and the table becomes too difficult to generate and

manage when many parameters of a device or a circuit are

involved.

On the other hand, neural networks have become a much
important vehicle in the signal processing area for speech

processing, vision, control systems, and more [15]-[ 18]. Re-

cently, it has been applied to microwave impedance matching

[19], to study the effects of design factors on printed circuit
board (PCB) assembly yield [20], in modeling the properties

of silicon dioxide films [21], and in manufacturing process

modeling [22]. Neural networks enjoy some distinguished
characteristics including the ability to learn from data, to

generalize patterns in data, and to model nonlinear relation-
ships. These appealing features make neural networks a good

candidate for overcoming some of the difficulties in traditional

device and circuit modeling and optimization. However, this

potentially powerful modeling approach has not been seriously
addressed in the literature and to bridge this gap is the
objective of this paper.

Presented in the paper is a new approach to microwave

circuit analysis. optimization, and statistical design featuring

neural network models at either device or circuit levels. At

the device level, the neural network represents a physics-

oriented FET model yet without the need to solve device

physics equations repeatedly during optimization [23]. At

the circuit level, the neural network speeds up optimization

by replacing repeated circuit simulations. The size of the

proposed model does not grow as fast as exponentially with
dimension and, in theory, can model any degree of nonlin-
earity. This proposed approach is much faster than traditional

optimization.
In Section II, the structure of the neural network suitable

for device and circuit approximation is presented. Section

III describes the model training algorithm and parameters. In
Section IV, the use of the model in two different cases, namely,

simulation and optimization, is introduced. Section V describes
the implementation of the neural network model into a CAD
system. Finally, in Section VI, three examples with either
device- or circuit-level modeling are presented illustrating the
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Fig. 1. A three-layer neural network.

advantages of the proposed neural network approach compared

to standard analysis and optimization.

II. STRUCTURE OF THE MODEL

A neural network is a simplified mathematical model of

a biological neural network. It consists of a collection of

interconnected neurons. Let z be an n-vector containing

parameters of a given device or a circuit, e.g., gate length

and width of a FET or geometrical and physical parameters

of high-speed VLSI interconnects [24], etc, Let y be a p-

vector representing various responses of the device or the
circuit under consideration, e.g., drain current of a FEf. The
relationship between z and response y is multidimensional

and nonlinear.
To model such a nonlinear relationship, a multilayer neural

network is employed. We use a three-layer neural network

with n processing elements (PE) in the input layer, p PE’s in
the output layer, and q PE’s in the hidden layer, as shown in
Fig. 1. The input and output layers correspond to device or
circuit parameters z and output responses y, respectively. The
hidden layer is represented by a q-vector z. Let

ak = [akl akz... akn]T (1)

and

bk = [bkl bkz . . . bkP]T (2)

be vectors representing the kth sample of the inputs and
outputs, respectively, k = 1,2, . . ~, N, where N is the total
number of data samples. The weighting factors between the

input and the hidden layers are wzh, and between the hidden

and the output layers are 7JhJ, where z = 1, 2,”””, n; h =
1,2, ..., q, and j = 1,2, . . . ,p. The output from the neural
network can be computed as

h=l

where ~h is a function defined as

(3)

(4)

(5)

and where ~h is a threshold value for the hth hidden PE.
Theoretically, this model can approximate any nonlinear rela-

tionship [16]. The parameters of the model are the weighting
factors W,h, ‘Uhj, and thresholds oh. The total number of these

parameters is n x q +p x q + q. The size of the model, i.e., the
number of model parameters, ultimately depends on the degree
of nonlinearity of the problem. It does not grow exponentially
when n, the number of inputs, is increased. Therefore, the
model can work in high dimension.

III. DETERMINATIONOF MODEL PARAMETERS

A. Neural Network Training

The neural network learns from samples of input–output
data, i.e., a~ and b~, k = 1,2,. ... N, where N is the total
number of samples. The n-input parameters ak could be
physical/geometrical parameters of a FET device or circuit
parameters. The p-outputs from the neural network bk repre-

sent the electrical device parameters. The learning algorithm

we used is based on multilayer error-correction learning, also

called backpropagation [15]–[ 18]. During learning, the neural
network automatically adjusts its weights and thresholds (i.e.,

w, k, vh~, and oh) so that the error E between neural network
predicted y~ and sampled outputs bkj

E==Ek=H’:(yJ‘6)
is minimized. This learning procedure is also called training.

There are two types of training algorithms: “on-line” train-

ing where neural network parameters are updated after each
sample presentation, and “off-line” training where neural net-
work parameters are updated after all samples are presented,
In this work, we choose the “on-line” training approach since
it is more efficient in most cases. The update equations are

dEk
‘h~‘+1 ==I& — v% + Ct(v;j – up) (7)

dEkk+l. k _
Wih

– “h – bwih
+ Ci(w$h – wfh- 1) (8)

and

,.
(9)
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where rI and a are positive-valued learning rate and momen-

tum, respectively. The sensitivity through the neural network

is computed as

and

= ~(yj - ‘kj)~hj~h(l ‘h)
J=l

(lo)

(11)

(12)

where 6\J) and 6$3) represent “local gradients” at individual

neuron in the second and third layers, respectively. The sample
data (~k, b~) can be obtained by device or circuit simulations

done off-line, or obtained directly from measurement. The

model parameters are then the final Set of values w~h, Vhj,

and 8h.

B. Training Algorithm

Our training algorithm is based on the backpropagation
technique [15]. Our modifications to the original backpropa-
gation includes a learning rate and momentum adaptation in
order to improve the speed of convergence:

Step 1: Choose the number of hidden neurons q and initial-

ize the weights Wih, vhj, and thresholds oh with small random
numbers. Choose initial values for q and a.

Step 2: Set k = 1.

Step 3: Supply training s~ple (~k, b~), let Z = Uk.
Step 4: Forward propagation:
● Compute the network’s output y following (3)–(5).

Step 5: Back propagation of the error:

● Compute the error Ek given in (6), and the gradients
dEk/8uhJ, 8E~/8Wih, and 8Ek/8dh in (10)-(12);

● Adjust the parameters of the network using (7)–(9).

Step 6: k = k + 1 if k < IV, where N is the total number

of training samples, go to Step 3.

Step 7: Compute the cumulative error E.

Step 8: If the cumulative error E is less than a given

training tolerance e, stop the training process:
Step 9: If E is larger than its previous value then: decrease

learning rate and momemtum, i.e., q = T x q and a = CYx a,
go to Step 2.

Step 10: If E decreases then: increase learning rate and

momentum, i.e., q = l/y x q and Q = l/~ x a, go to Step 2.

C. Training Parameters

The efficiency of training depends on the following training

parameters:

●

●

●

b

●

●

Number of hidden layers: It has been theoretically proved
that a multilayer neural network with at least one hid-
den layer can model arbitrarily complex nonlinear in-
put/output relationship. In this work the total number of
layers is fixed to three, i.e. only one hidden layer.

Number of hidden neurons q: Once the number of hidden

layers is fixed to one, the number of neurons in the
hidden layer will determine the structure of our network.
A large number of hidden neurons is required to model

complicated relationships. But too many can result in
an overtrained network. An overtrained network tends

to memorize rather than to generalize from data.
Learning rate q: This parameter determines the speed of
convergence by regulating the step size.
Momentum a: The momentum term is to prevent the
training algorithm from settling in local minima. It also
increases the speed of convergence. This parameter is

usually set to a positive value less than 1.
Training tolerance 6: This critical learning parameter
determines the accuracy of the neural network outputs.
A smaller training tolerance usually increases learning
accuracy but can result in less generalization capability
as well as longer training time.
Learning rate adaptation -y: An adaptive learning rate

decreases training time by keeping the learning rate
reasonably high while insuring stability,

The optimal values of the parameters q, q, a, q and y are

problem-dependent and are obtained usually from experiment.

Actual values of all these training parameters are given in
Example 1 of Section VI.

IV. USE OF THE MODEL

A. Circuit Representation of the Neural Network Model

In order to connect the neural network model to a simulator,
we need first a circuit representation of the model consis-
tent with the device under consideration. In the case of a
MESFET, output parameters are the gate, drain, and source

cu~ents ~gc, Id,, and 1.. and the total chmges Qg, Qd, and
Q, on the gate, drain, and source electrodes, respectively. The
neural network model will have then an output layer with six
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A circuit representation of this six-output neural network
model is shown in Fig. 2.

Use of the model corresponds to the recalling mode, where
the neural network will predict output responses from given
input of device parameters. Two cases are considered in this

paper, simulation and optimization.

B. Circuit Simulation

Our choice in this work is the use of harmonic balance
method (HBM) for steady-state analysis of nonlinear periodic

circuits. However, the technique can be applied to transient
analysis as well. The HBM is an efficient tool for the sim-
ulation of nonlinear microwave circuits, e.g., [25]–[27]. h
the HBM, the circuit is divided into linear and nonlinear
subnetworks. This makes it simple to include the neural
network model as an additional nonlinear subnetwork as
shown in Fig. 3. In other words, when the model is used
to model an active or passive element, it enters the overall
circuit harmonic balance equation as

F(v) = I(v)+ jf2Q(V) + In(v) + jflQn(v)
+YV+ISS=O (14)

where Y is the nodal admittance matrix that describes the
linear subnetwork, V, 1, 1ss, and Q(V) are the vectors that
contain the Fourier coefficients of the respective time-domain
waveforms at each node and all harmonics, as defined in [1], V
representing voltages in the circuit, 1 and Q(V) representing,
respectively, currents and charges of the nonlinear subnetwork,
and 1~~ representing the sources. The vectors In(V) and

Qn(V) represent the Fourier coefficients of the currents and
charges entering the nodes from the neural network model. f2

Fig. 3. Implementation of neural network models into circuit simulator.

is the angullar frequency matrix. For example, when the neural

network models a FET, In(V) and Qn (V) are computed,
respectively, from the Fourier transform of the time-domain
currents YI, y’, and Y3, and charges Y4,Y5, and y6, which are
provided by the neural network from the given gate and drain

voltages [see (13)]. Notice that solving this harmonic balance
problem does not require repeated solutions of the device
physics equations as needed in the standard approach of [1],

[6]. Another type of analysis is Monte Carlo analysis where the

circuit is repeatedly simulated with randomly generated device
parameters. Again in this case the neural network approach

speeds up analysis by replacing repeated solutions of device
physics equations.

C. Circuit Optimization

Our approach allows the neural network inputs x as op-
timization variables, e.g., physical/geometrical parameters of
the device (or circuits. The circuit responses can be obtained
from a circuit simulator solving (14), or directly from a neural
network output when it models the overall circuit. Let r#Jbe
a vector of design variables and the set of error functions

‘J(4) ~ J“ = 1 ~ 2 ~””” 1 m ~ be the weighted difference between

circuit responses and design specifications. The performance
optimization problem can be posed as

Min~mize max {cl, e2, . . . . em} (15)

subject to electrical or physical/geometrical constraints on the
circuit elements.

Let the nominal values of the circuit variables be q!JO.A
number of random outcomes q5k,k = 1,2, . . . . are gener-

ated around the nominal point do according to the statistical
distributions of these parameters. Yield is defined as the
ratio between the number of circuit outcomes passing design
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TABLE I
RANGESOF NEURAL NETWORK INPUT PARAMETERS

Parameters Notation Range

Gate Length L 0.9 -1.1 pm

Gate Width w 270-330 pm

Channel Thickness a 0.27-0.33 pm

Doping Density Nd 8 x 10Z2 – 12 X 1022 l/m3

Gate Voltage VG -5.025-0 V

Drain Voltage v~ O-6V

TABLE II
NEURAL NETWORK TRAINING PARAMETERS

Parameter

No. of neurons in input layer

No. of neurons in output layer

No. of neurons in hidden layer

No. of samples

Learning rate

Momentum

Training tolerance

Learning rate adaptation

Notation

n

P

q
N

V
a

e

-f

Value

6

4
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Fig. 4. Neural network learning curve.

specifications and the total number of outcomes. Numerical
optimization is used to find the design center +0 such that the
yield is maximized [3]–[5]. The present work is based on a
generalized 11 formulation of the problem [3], [4], i.e.

Minr~ize U(#O) = ~ aku(~k) (16)

kEK

where the index set K is

K = {klu(rj~) > o} (17)

and u(r#I) is a generalized 1Pfunction of ei (0), i = 1, 2,”””, m
and a~ is a properly chosen weighting factor.
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Fig. 6. Small-sigmal S-parameters (maguitude) comparison. (o,+,*, and
x) represent neural network results. (–) represents Khatibzadeh and Trew
models.

V. IMPLEMENTATION

Circuit simulator solving the harmonic balance equations
(14) with neural network models is implemented through the
0SA90/Hope [28] CAD system, which provides combined
de/small/large signal analysis. The neural network was first
trained off-line using sample data. The trained neural network
model is then combined with the CAD system for analysis,

optimization, Monte Carlo simulation and yield optimization
of microwave circuits. The structure of various modules con-
nected through UNIX pipe facilities is shown in Fig. 3. The

pipe transfers input parameter values from the simulator to the
neural network program and reads back the neural network
calculated output parameters. The neural network does not
have to be retrained during simulation or optimization, thus
speeding up on-line analysis and optimization. According to
(3)-(5) the evaluation of outputs from the neural network
model is extremely fast.
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Fig. 7. A high-speed VLSI interconnect network represented by a seven transmission line cirmut with nonlinear terminations.

TABLE 111
VARIABLES FOR NOMINAL DESIGN

Design Before After I Design Before After

Variable Optimization Optimization lVariable Optimization Optimization

Sc, (pm’) 353.1 326.8 I nL4 3.68 3.49

Sc. (wn’) 2014.4 2001.5

Sc’ (pm’) 212.3 224.6

Sc.(pm’) 354.2 343.8

nL1 3.06 3.50

nL2 3.56 3.76

n,. 2.84 2.91

nL5 2.13 2.31

nL6 2.61 2.47

nLT 2.42 2.74

nL8 2.45 2.47

?LL9 2.88 2.71

n?,. 3.09 2.98

VI. EXAMPLES

A. Example I—Physics-Orien ted Neural

Network Model of a MESFET

Physics-based device models are very CPU intensive spe-
cially when used for optimization or iterative simulations. A

neural network model for this kind of devices will be very
efficient in speeding up the simulation and optimization. The
physical FET model chosen is the Khatibzadeh and Trew

model [6]. Fig. 2 shows the circuit representation of the neural
network model outputs, where I~C, IdC, and I~C are the gate,
drain, and source conduction currents, respectively. Qg, Qd,
and Q~ stand for the total charges on the gate, drain, and
source electrodes, respectively.

A three-layer neural network is used to model this FET.
The input vector z for the neural network has six parameters
including physical parameters: gate length L, gate width
W, channel thickness a, and doping density Nd, and the
gate–source and drain–source voltages V~, and Vd,. To train
the neural network each input parameter is allowed to vary
over a certain range, as specified in Table I. Typical values
of the neural network training parameters described in Section

III are summarized in Table II. The learning curve, also called

cost function [29], for this model is shown in Fig. 4.
We use new data different from the learning samples for

verification of the neural network model. DC and small-signal
S-parameter analysis predicted with our trained neural network
model are compared to those simulated using the original
Khatibzadeh and Trew Model, in Figs. 5 and 6, respectively.

B. Example 2—Transmission Line Circuit

with Nonlinear Terminations

In this example, we demonstrate a different type of neural
network model. Instead of modeling a device or a circuit ele-
ment, we mlodel the circuit responses of an entire circuit. Fig.
7 represents a high-speed VLSI interconnect network modeled
by seven transmission lines and five nonlinear driver/receivers.
Signal delay through such interconnect network is an important
criterion in high-speed VLSI system design [24]. However,
repeated sig)nal delay analysis of this circuit is CPU intensive
if done using conventional circuit simulators such as Spice.
We choose six termination variables including capacitors,
inductors, and resistors at the four terminations as input vector
z for the neural network. The signal integrity responses y
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include the signal propagation delay of VOUtl through VOUt4.

The number of hidden PE’s in the neural network q = 30.

A comparison of the four signal integrity responses predicted
by the trained neural network with those from HSpice [30]
was made for 100 sets of randomly generated samples of
termination parameters which were not used for training. The
result of such comparison is plotted in Fig. 8. The agreement
of the neural network prediction with HSpice was generally
within %0.270.

This example illustrates the flexibility and generality of

neural networks. Without changing equations and structures,

neural networks are able to model not only devices but

also circuits. Training enables neural networks to learn from

different relationships.

C. Example 3—Yield Optimization of a Three-Stage
X-Band MMIC Ampli$er

We consider a three-stage small-signal X-band cascadable
MMIC (Monolithic Microwave Integrated Circuits) amplifier
[1] shown in Fig. 9. The design is based on the circuit topology

described in [3 1]. The amplifier contains three MESFET’s. The

matching circuits are composed of inductors and capacitors

arranged in bandpass topology.
Physics-based models are used for both the MESFET’s and

passive elements of the amplifier. In this way, all the passive
components, as well as active devices, can be simulated and
optimized in terms of physical parameters. Since all devices
are made from the same material and on the same wafer, they
share common parameters. All three MESFET’s have the same

values for the critical electric field, saturation velocity, relative
permittivity, built-in potential, low-field mobility, and high-

field duffusion coefficient [1]. Thus the same neural network

model, developed in Example 1, is used for all three MES-
FET’s. All the MIM (metal–insulator–metal) capacitors have

the same dielectric film, and all bulk resistors have the same
sheet resistance. The geometrical parameters, on the other
hand, can have different values for different devices, including
the gate length, gate width, channel thickness, and doping
density of the MESFET’S, the metal-plate area of the MIM
capacitors, and the number of turns of the spiral inductors. In

other words, the neural network model is trained only once

but is called three times, each time with a different set of

input parameters Li, W’, a’, N:, V;,, and V&, corresponding

to MESFETi, i = 1,2)3.
The specifications for the amplifier circuit include

● Passband (8–12 GHz): 12.4 dB < gain < 15.6 dB, input

VSWR < 2.8.
● Stopband (below 6 GHz or above 15 GHz): gain <2 dB.

There are 14 design variables, the area SC1, ..”, SC4 of the
metal plates of the’ MIM capacitors Cl, o.. , CA and the number
of turns n~l> . ..> n~lo of the spiral inductors L1, ..., LIO. As
a first step, a nominal design optimization using neural network
was carried out reducing the objective function of (15) from
6.7 to –O. 15, all specifications being satisfied. Table III lists
the 14 design variables before and after minimax optimiza-
tion. In Fig. 10, the gain and input VSWR of the amplifier

0.81

0
-0.8j ,~ ;0 ;0 j. ;0 ;0 ;0 ~. & ,

Numberof New Samples (not used for training)

Fig. 8. The seven-transmission-line example. Percentage errors between,
signal delays predicted from the neural network model and that from exact
simulation for 100 randomly generated sets of samples not used for training.

using neural network models before and after optimization

are compared. To verify the optimization solution, the same
parameters in Table III were used to simulate the X-bdnd

amplifier with the Khatibzadeh and Trew model, which is a
much more complex model. We found all specifications being
satisfied as illustrated in Fig. 11.

In the second step, yield optimization using /1 centring
algorithm as described in Section IV is performed with the
minimax nominal design as a starting point. There are 37

statistical variables including the neural network inputs gate
length, gate width, channel thickness, and doping density

of the MESFET’s, as well as the geometrical parameters of
the passive elements, namely, the conductor width WL and
spacing SL of the ten spiral inductors L1, L2 . . . . Llo, the

thickness d of the dielectric film for all MIM capacitors,
and the area SC1, . . . . SCA of the metal plates of the MIM
capacitors Cl, . . . . C’4. The distributions for these 37 statistical
variables are listed in Table IV. The correlation matrix between
the three sets of MESFET parameters in [1] is used. The
yield after minimax nominal design optimization was 26%

with the neural network model and 32% with the Khatibzadeh
and Trew model. The CPU time used for the Monte Carlo

sweeps was 1 h and 30 min for the neural network approach
and 40 h 34 min for the Khatibzadeh and Trew model,
i.e., our approach is about 30 times faster. At the solution
of yield optimization using neural network, the yield was
improved to 58~0. To verify this solution, we performed Monte
Carlo analysis using Khatibzadeh and Trew model, the yield
was 59910.Thus validity of the neural network approach was
confirmed. The solution is given in Table V. The Monte

Carlo sweeps before and after yield optimization are shown
in Fig. 12. Yield optimization with 50 outcomes using neural
network model took 50 min CPU time per iteration em a
Sun SPARCstation 2. The corresponding CPU time using the
Khatibzadeh and Trew model with quadratic model [10] is
4 h and 14 min. Table VI summarizes the CPU speedup
achievement.
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Fig. 9. Circuit
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diagram of au X-baud amplifier.

TABLE IV
DISTRIBUTIONSFOR STATISTICALVARIABLES, AFTER [1]

Variable Mean Deviation (%) Variable Mean Deviation (%)

Nd(l/rn3) 1.0 x 10*3 7.0 d (Mm) 0.1 4.0

L(jtm) 1.0 3.5 ] SC,(/m2) 326.8 3.5

dm) 0.3 3.5 i Sc,(pz’) ‘2022.4 3.5

W(pm) 300 2.o I Scj(pmz) 218.2 3.5

W~(pm) 20 3.0 I &t(pm2) 352.2 35

SL(pm) 10 3.0 I

TABLE V
DESIGN VARIABLESFOR YIELD OPTIMIZATION

Design Before After Design Before After

Variable Optimization Optimization Variable Optimization Optimization

S~l(pm2) 272.8 232.2 n L4 3.49 3.58

S~Z(pmz) 2001.5 2006.9 n L5 2.31 2.38

SC3(pm’) 244.4 277.8 n,L13 2.47 2.49

SC4(pm2 ) 343.8 346.1 n,~v 2.74 2.72

nLl 3.50 3.55 n,j8 2.47 2.49

nL2 3.76 3.73 n,;~ 2.71 2.73

nL3 2.91 2.99 nL I. 2.98 3.00

TABLE VI
SUMMARYOF CPU COMPARISON

Application I Khat.ibza.eh & TrewTR&l Network I .peecl-.p ~

Optimization

Monte Carlo

Y]eld Optimization 4:iM:l=s?s=l

VII. CONCLUSION work have demonstrated the feasibility and the efficiency of

In this paper we have presented a nontraditional approach using neural networks for physics-based device modeling. A

to microwave circuit analysis, optimization, and statistical systematic description of neural network and its integration

design featuring neural network models. The results from our with circuit simulations has been presented.
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Fig. 10. Gain and input VSWR of the X-band amplifier with neural network
models before (– .–) and after (—) nominal design optimization.
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Fig. 11. Gnin and input VSWR of the X-band amplifier with Khatibzadeh
and Trew models before (– .–) and after (—) nominal design optimization.

By exploiting the flexibility and generality of the neural

network model, we have demonstrated its use for device and

circuit-level modeling as well. Even though a neural network
model has no embeded electrical or physics equations, we have
shown its capability to relate the circuit outputs to parameters
at any level, e.g., electrical, physical, or both. In addition,
its capability of learning from abstract data means it has the
potential to model different types of devices without changing
formulas.
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