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A Neural Network Modeling Approach
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Abstract—The trend of using accurate models such as physics-
based FET models, coupled with the demand for yield optimiza-
tion results in a computationally challenging task. This paper
presents a new approach to microwave circuit optimization and
statistical design featuring neural network models at either device
or circuit levels. At the device level, the neural network represents
a physics-oriented FET model yet without the need to solve device
physics equations repeatedly during optimization. At the circuit
level, the neural network speeds up optimization by replacing
repeated circuit simulations. This method is faster than direct
optimization of original device and circuit models. Compared to
existing pelynomial or table look-up models used in analysis and
optimization, the proposed approach has the capability to handle
high-dimensional and higply nonlinear problems.

1. INTRODUCTION

HE DEMAND in microwave industry for manufactura-

bility and fast design cycles creates the need for statistical
design techniques. Yield analysis and optimization, which
take into account the manufacturing tolerances, model un-
certainties, variations in the process parameters, etc., have
become widely accepted as indispensable components of the
circuit design methodology [1]-[5]. On the other hand, for
microwave circuit design the effectiveness of modern CAD
methods relies heavily on accurate models of active and pas-
sive elements. Models such as physics-based models (PBM)
for active devices, e.g., [6], [7], become necessary. The use
of such accurate models, however, is at the expense of much
increased computational cost. Combining yield optimization
and physics-based modeling results in a computationally very
intensive task.

Standard optimization and statistical design approaches re-
quire repeated circuit simulations. Since each circuit simula-
tion involves a CPU-intensive procedure to solve the physics-
based equations, such existing optimization methods are more
oriented towards off-line computations. They are not suitable
for practical interactive design where designers may need to
reoptimize the circuit after modifications in specifications, or
even circuit topologies. To address this problem, two types
of approximations have been previously used. 1) Multidimen-
sional polynomial (or its variants such as splines or response
surface) models, e.g., [3], [4], [8]-[10], to approximate and
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replace original simulations during optimization. However,
this approach can handle only mild nonlinearity in high-
dimensional space. It typically requires model building or
updating during optimization, consuming valuable on-line
CPU time. 2) The look-up table approach, e.g., [111-[14], to
approximate and to replace accurate device or circuit simula-
tions. However, the size of the table grows exponentially with
dimension and the table becomes too difficult to generate and
manage when many parameters of a device or a circuit are
involved.

On the other hand, neural networks have become a much
important vehicle in the signal processing area for speech
processing, vision, control systems, and more [15]-[18]. Re-
cently, it has been applied to microwave impedance matching
[19], to study the effects of design factors on printed circuit
board (PCB) assembly yield [20], in modeling the properties
of silicon dioxide films [21], and in manufacturing process
modeling [22]. Neural networks enjoy some distinguished
characteristics including the ability to learn from data, to
generalize patterns in data, and to model nonlinear relation-
ships. These appealing features make neural networks a good
candidate for overcoming some of the difficulties in traditional
device and circuit modeling and optimization. However, this
potentially powerful modeling approach has not been seriously
addressed in the literature and to bridge this gap is the
objective of this paper.

Presented in the paper is a new approach to microwave
circuit analysis, optimization, and statistical design featuring
neural network models at either device or circuit levels. At
the device level, the neural network represents a physics-
oriented FET model yet without the need to solve device
physics equations repeatedly during optimization [23]. At
the circuit level, the neural network speeds up optimization
by replacing repeated circuit simulations. The size of the
proposed model does not grow as fast as exponentially with
dimension and, in theory, can model any degree of nonlin-
carity. This proposed approach is much faster than traditional
optimization.

In Section II, the structure of the neural network suitable
for device and circuit approximation is presented. Section
1T describes the model training algorithm and parameters. In
Section IV, the use of the model in two different cases, namely,
simulation and optimization, is introduced. Section V describes
the implementation of the neural network model into a CAD
system. Finally, in Section VI, three examples with either
device- or circuit-level modeling are presented illustrating the
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Fig. 1.

advantages of the proposed neural network approach compared
to standard analysis and optimization.

II. STRUCTURE OF THE MODEL

A neural network is a simplified mathematical model of
a biological neural network. It consists of a collection of
interconnected neurons. Let x be an n-vector containing
parameters of a given device or a circuit, e.g., gate length
and width of a FET or geometrical and physical parameters
of high-speed VLSI interconnects [24], etc. Let y be a p-
vector representing various responses of the device or the
circuit under consideration, e.g., drain current of a FET. The
relationship between x and response y is multidimensional
and nonlinear.

To model such a nonlinear relationship, a multilayer neural
network is employed. We use a three-layer neural network
with n processing elements (PE) in the input layer, p PE’s in
the output layer, and ¢ PE’s in the hidden layer, as shown in
Fig. 1. The input and output layers correspond to device or
circuit parameters « and output responses g, respectively. The
hidden layer is represented by a ¢-vector z. Let

ar = [ar1  ara - agn]” ¢))
and
by, = (b1 brz - -brp]” 2

be vectors representing the kth sample of the inputs and
outputs, respectively, k¥ = 1,2,---, N, where N is the total
number of data samples. The weighting factors between the
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input and the hidden layers are w,;, and between the hidden
and the output layers are wvp,, where ¢ = 1,2,---,n; h =
1,2,---,q, and 7 = 1,2,--.,p. The output from the neural
network can be computed as

q
Y5 = Z ZnURj 3
h=1
where z;, is a function defined as
1
= = ——— 4
zn = f(7m) pp— 4)

Yh = (Z afkiwih) +0n = (Z wﬂlhh) +0 O
=1 =1

and where #; is a threshold value for the hth hidden PE.
Theoretically, this model can approximate any nonlinear rela-
tionship [16]. The parameters of the model are the weighting
factors w,p,, vp;, and thresholds 8;,. The total number of these
parameters is n X ¢+ p X g+ ¢g. The size of the model, i.e., the
number of model parameters, ultimately depends on the degree
of nonlinearity of the problem. It does not grow exponentially
when n, the number of inputs, is increased. Therefore, the
model can work in high dimension.

III. DETERMINATION OF MODEL PARAMETERS

A. Neural Network Training

The neural network learns from samples of input—output
data, i.e., a; and by, k = 1,2,---, N, where N is the total
number of samples. The n-input parameters a; could be
physical/geometrical parameters of a FET device or circuit
parameters. The p-outputs from the neural network b repre-
sent the electrical device parameters. The learning algorithm
we used is based on multilayer error-correction learning, also
called backpropagation [15]-[18]. During learning, the neural
network automatically adjusts its weights and thresholds (i.e.,
Wyh, Vhy, and 6y) so that the error £ between neural network
predicted y, and sampled outputs by ;

N N 2
E=Y"E*=3" 113 "(y, - bsy)? (6)
k=1

k=1 j=1

is minimized. This learning procedure is also called training.

There are two types of training algorithms: “on-line” train-
ing where neural network parameters arc updated after each
sample presentation, and “off-line” training where neural net-
work parameters are updated after all samples are presented.
In this work, we choose the “on-line” training approach since
it is more efficient in most cases. The update equations are

OE* . _
’U}]i;i‘l :v,’f] — n% + a(v,’;] - U}’L 1) (7
k+1 k EF k k-1
win L = wh, — e + a(wy, —wy, ) ®)
and
OFEk .
i+l = gF — s a0 — o5 )
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where 77 and « are positive-valued learning rate and momen-
tum, respectively. The sensitivity through the neural network
is computed as

OEF 8 |1 N
avhj - a'UhJ 5 Z(y] - bk])
J=1
= (yj — brj)zn
=52, (10)
OEF 2”: DL 9y, 0z Iy
8wih - =1 5yj Bzh a"yh 8w,h
p
= (yj = by )vny2n(1 = 2n) s
1=1
S
= Zh(l - Zh) Z 65 )vhjakl
=1
=P ay,; (1)
and
OB _ g~ OE" 0y, 0z, o
BHh = ayj 8zh 3"}% 89h
p
= > (¥ — brj)onyzn (1~ 21)
1=l
S
= Zh(l - Zh) Z (5]( )vhJ
1=1
=5 (12)

where 6,(12) and 63(3) represent “local gradients” at individual
neuron in the second and third layers, respectively. The sample
data (ag, by) can be obtained by device or circuit simulations
done off-line, or obtained directly from measurement. The
model parameters are then the final set of values w,p, vgy,
and 0h.

B. Training Algorithm

Our training alogorithm is based on the backpropagation
technique [15]. Our modifications to the original backpropa-
gation includes a learning rate and momentum adaptation in
order to improve the speed of convergence:

Step 1: Choose the number of hidden neurons ¢ and initial-
ize the weights w;n, vy, and thresholds 6, with small random
numbers. Choose initial values for 7 and .

Step 2: Set k = 1.

Step 3: Supply training sample (a,br), let £ = ag.

Step 4: Forward propagation:

e Compute the network’s output y following (3)—(5).

Step 5: Back propagation of the error:

e Compute the error £* given in (6), and the gradients
OE* |dvy,, OE* |dw;y, and OE* [/88;, in (10)—(12);
e Adjust the parameters of the network using (7)-(9).
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Step 6: k =k +1if k < N, where N is the total number
of training samples, go to Step 3.

Step 7: Compute the cumulative error F.

Step 8: If the cumulative error E is less than a given
training tolerance ¢, stop the training process:

Step 9: If F is larger than its previous value then: decrease
learning rate and momemtum, i.e., n =y X g and o = v X @,
go to Step 2.

Step 10: If E decreases then: increase learning rate and
momentum, i.e., 7=1/vyxnand a = 1/ X a, go to Step 2.

C. Training Parameters

The efficiency of training depends on the following training
parameters:

e Number of hidden layers: It has been theoretically proved
that a multilayer neural network with at least one hid-
den layer can model arbitrarily complex nonlinear in-
put/output relationship. In this work the total number of
layers is fixed to three, i.e. only one hidden layer.

¢ Number of hidden neurons ¢: Once the number of hidden
layers is fixed to one, the number of neurons in the
hidden layer will determine the structure of our network.
A large number of hidden neurons is required to model
complicated relationships. But too many can result in
an overtrained network. An overtrained network tends
to memorize rather than to generalize from data.

o Learning rate n: This parameter determines the speed of
convergence by regulating the step size.

e Momentum «: The momentum term is to prevent the
training algorithm from settling in local minima. It also
increases the speed of convergence. This parameter is
usually set to a positive value less than 1.

# Training tolerance e: This critical learning parameter
determines the accuracy of the neural network outputs.
A smaller training tolerance usually increases learning
accuracy but can result in less generalization capability
as well as longer training time.

e Leaming rate adaptation ~: An adaptive learning rate
decreases training time by keeping the learning rate
reasonably high while insuring stability.

The optimal values of the parameters g,7, o, €, and v are
problem-dependent and are obtained usually from experiment.
Actual values of all these training parameters are given in
Example 1 of Section VI.

IV. USE OF THE MODEL

A. Circuit Representation of the Neural Network Model

In order to connect the neural network model to a simulator,
we need first a circuit representation of the model consis-
tent with the device under consideration. In the case of a
MESFET, output parameters are the gate, drain, and source
currents Iy, 4., and I,. and the total charges Q,,Qq, and
Q. on the gate, drain, and source electrodes, respectively. The
neural network model will have then an output layer with six
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Fig. 2. Circuit representation of the six-output parameters at the neural
network output layer, where y = [Ige. Tgcs Lse, Qgy Qa, Qs]7 -

parameters, i.e.

Y = (Y1, Y2, Y3 Ya, Y5, Ys]

= [IgcaIdc-,Isca ng Qd7 QS]T'

A circuit representation of this six-output neural network
model is shown in Fig. 2.

Use of the model corresponds to the recalling mode, where
the neural network will predict output responses from given
input of device parameters. Two cases are considered in this
paper, simulation and optimization.

(13)

B. Circuit Simulation

Our choice in this work is the use of harmonic balance
method (HBM) for steady-state analysis of nonlinear periodic
circuits. However, the technique can be applied to transient
analysis as well. The HBM is an efficient tool for the sim-
ulation of nonlinear microwave circuits, e.g., [25]-[27]. In
the HBM, the circuit is divided into linear and nonlinear
subnetworks. This makes it simple to include the neural
network model as an additional nonlinear subnetwork as
shown in Fig. 3. In other words, when the model is used
to model an active or passive element, it enters the overall
circuit harmonic balance equation as

F(V)=I(V)+j02Q(V) + In(V) + j2Qn(V)

where Y is the nodal admittance matrix that describes the
linear subnetwork, V', I, Igs, and @Q(V') are the vectors that
contain the Fourier coefficients of the respective time-domain
waveforms at each node and all harmonics, as defined in [1], V'
representing voltages in the circuit, I and @Q(V') representing,
respectively. currents and charges of the nonlinear subnetwork,
and Igs representing the sources. The vectors I (V) and
Qn (V) represent the Fourier coefficients of the currents and
charges entering the nodes from the neural network model. £2
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Fig. 3. Implementation of neural network models into circuit simulator.

is the angular frequency matrix. For example, when the neural
network models a FET, In(V) and Qn(V) are computed,
respectively, from the Fourier transform of the time-domain
currents y1,y2, and ys, and charges y4, y5. and ys, which are
provided by the neural network from the given gate and drain
voltages [see (13)]. Notice that solving this harmonic balance
problem does not require repeated solutions of the device
physics equations as needed in the standard approach of [1],
[6]. Another type of analysis is Monte Carlo analysis where the
circuit is repeatedly simulated with randomly generated device
parameters. Again in this case the neural network approach
speeds up analysis by replacing repeated solutions of device
physics equations.

C. Circuit Optimization

Our approach allows the neural network inputs x as op-
timization variables, e.g., physical/geometrical parameters of
the device or circuits. The circuit responses can be obtained
from a circuit simulator solving (14), or directly from a neural
network output when it models the overall circuit. Let ¢ be
a vector of design variables and the set of error functions
e;(¢),5 = 1,2,---,m, be the weighted difference between
circuit responses and design specifications. The performance
optimization problem can be posed as

Min%bmize max {e1. €2, ", em} (15)
subject to electrical or physical/geometrical constraints on the
circuit elements.

Let the nominal values of the circuit variables be ¢O. A
number of random outcomes ¢k,k = 1,2,-.-, are gener-
ated around the nominal point ¢° according to the statistical
distributions of these parameters. Yield is defined as the
ratio between the number of circuit outcomes passing design
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TABLE I

RANGES OF NEURAL NETWORK INPUT PARAMETERS
Parameters Notation | Range
Gate Length L 0.9 - 1.1 pm
Gate Width w 270 - 330 pm
Channel Thickness a 0.27 - 0.33 pm
Doping Density Ny 8 X 10?2 — 12 x 10%2 1/m?®
Gate Voltage Vo -5.025 -0V
Drain Voltage Vb 0-6V

TABLE 1II
NEURAL NETWORK TRAINING PARAMETERS
Parameter Notation | Value
No. of neurons in input layer n 6
No. of neurons in output layer P 4
No. of neurons in hidden layer q 100
No. of samples N 1000
Learning rate 7 0.2
Momentum a 0.6
Training tolerance € 4.09e-02
Learning rate adaptation ¥ 0.8
1 T T T T T T T T T
0.9f J
0.8[- 3
0.7} J
5 )
O 0.6
4
Zosf 1
3
5
3o4 1
0.3 b
0.2+ i
0.1 i
0 5(IJO 10‘00 15IOO 20IOO 2500 3000 3500 4000 4500

lterations
Fig. 4. Neural network learning curve.

specifications and the total number of outcomes. Numerical
optimization is used to find the design center #° such that the
yield is maximized [3]-[5]. The present work is based on a
generalized Iy formulation of the problem [3], [4], i.e.

Minimize U (¢°) = ) axu(4”) (16)
¢ keK
where the index set K is
K = {klu(¢*) >0} (17)
and u(¢) is a generalized [, function of e;(¢),i = 1,2,---,m

and oy is a properly chosen weighting factor.
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Fig. 6. Small-sigmal S-parameters (magnitude) comparison. (o0, +,*, and
%) represent neural network results. (—) represents Khatibzadeh and Trew
models.

V. IMPLEMENTATION

Circuit simulator solving the harmonic balance equations
(14) with neural network models is implemented through the
OSA90/Hope [28] CAD system, which provides combined
dc/small/large signal analysis. The neural network was first
trained off-line using sample data. The trained neural network
model is then combined with the CAD system for analysis,
optimization, Monte Carlo simulation and yield optimization
of microwave circuits. The structure of various modules con-
nected through UNIX pipe facilities is shown in Fig. 3. The
pipe transfers input parameter values from the simulator to the |
neural network program and reads back the neural network
calculated output parameters. The neural network does not
have to be retrained during simulation or optimization, thus
speeding up on-line analysis and optimization. According to
(3)=(5) the evaluation of outputs from the neural network
model is extremely fast.
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Fig. 7. A high-speed VLSI interconnect network represented by a seven transmission line circuit with nonlinear terminations.

TABLE 11
VARIABLES FOR NOMINAL DESION
Design Before After Design Before After
Variable  Optimization Optimization | Variable Optimization Optimization
S(;l(;tmz) 353.1 326.8 nrs 3.68 3.49
Scz(pm?) 2014.4 2001.5 nrs 2.13 2.31
Sca(pm?) 212.3 224.6 nrg 2.61 2.47
504(um2) 354.2 343.8 nrr 2.42 2.74
nry 3.06 3.50 NnLs 2.45 2.47
nrz 3.56 3.76 Nrg 2.88 2.71
nr3 2.84 2.91 Nrio 3.09 2.98

VI. EXAMPLES

A. Example 1—Physics-Oriented Neural
Network Model of a MESFET

Physics-based device models are very CPU intensive spe-
cially when used for optimization or iterative simulations. A
neural network model for this kind of devices will be very
efficient in speeding up the simulation and optimization. The
physical FET model chosen is the Khatibzadeh and Trew
model [6]. Fig. 2 shows the circuit representation of the neural
network model outputs, where Iy, Iqc, and I, are the gate,
drain, and source conduction currents, respectively. Qg, Qq,
and @), stand for the total charges on the gate, drain, and
source electrodes, respectively.

A three-layer neural network is used to model this FET.
The input vector z for the neural network has six parameters
including physical parameters: gate length L, gate width
W, channel thickness a, and doping density N4, and the
gate—source and drain-source voltages Vg, and V. To train
the neural network each input parameter is allowed to vary
over a certain range, as specified in Table 1. Typical values
of the neural petwork training parameters described in Section

I are summarized in Table II. The learning curve, also called
cost function [29], for this model is shown in Fig. 4.

We use new data different from the learning samples for
verification of the neural network model. DC and small-signal
S-parameter analysis predicted with our trained neural network
model are compared to those simulated using the original
Khatibzadeh and Trew Model. in Figs. 5 and 6, respectively.

B. Example 2—Transmission Line Circuit
with Nonlinear Terminations

In this example, we demonstrate a different type of neural
network model. Instead of modeling a device or a circuit ele-
ment, we model the circuit responses of an entire circuit. Fig.
7 represents a high-speed VLSI interconnect network modeled
by seven transmission lines and five nonlinear driver/receivers.
Signal delay through such interconnect network is an important
criterion in high-speed VLSI system design [24]. However,
repeated signal delay analysis of this circuit is CPU intensive
if done using conventional circuit simulators such as Spice.
We choose six termination variables including capacitors,
inductors, and resistors at the four terminations as input vector
z for the neural network. The signal integrity responses y
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include the signal propagation delay of Viout through Viyis.
The number of hidden PE’s in the neural network ¢ = 30.
A comparison of the four signal integrity responses predicted
by the trained neural network with those from HSpice [30]
was made for 100 sets of randomly generated samples of
termination parameters which were not used for training. The
result of such comparison is plotted in Fig. 8. The agreement
of the neural network prediction with HSpice was generally
within +£0.2%.

This example illustrates the flexibility and generality of
neural networks. Without changing equations and structures,
neural networks are able to model not only devices but
also circuits. Training enables neural networks to learn from
different relationships.

C. Example 3—Yield Optimization of a Three-Stage
X-Band MMIC Amplifier

We consider a three-stage small-signal X -band cascadable
MMIC (Monolithic Microwave Integrated Circuits) amplifier
[1] shown in Fig. 9. The design is based on the circuit topology
described in [31]. The amplifier contains three MESFET’s. The
matching circuits are composed of inductors and capacitors
arranged in bandpass topology.

Physics-based models are used for both the MESFET’s and
passive elements of the amplifier. In this way, all the passive
components, as well as active devices, can be simulated and
optimized in terms of physical parameters. Since all devices
are made from the same material and on the same wafer, they
share common parameters. All three MESFET’s have the same
values for the critical electric field, saturation velocity, relative
permittivity, built-in potential, low-field mobility, and high-
field duffusion coefficient [1]. Thus the same neural network
model, developed in Example 1, is used for all three MES-
FET’s. All the MIM (metal—insulator-metal) capacitors have
the same dielectric film, and all bulk resistors have the same
sheet resistance. The geometrical parameters, on the other
hand, can have different values for different devices, including
the gate length, gate width, channel thickness, and doping
density of the MESFET’s, the metal-plate area of the MIM
capacitors, and the number of turns of the spiral inductors. In
other words, the neural network model is trained only once
but is called three times, each time with a different set of
input parameters L', W*, a", N, V%, and V},, corresponding
to MESFET",: = 1,2,3.

The specifications for the amplifier circuit include

e Passband (8-12 GHz): 12.4 dB < gain < 15.6 dB, input

VSWR < 2.8.
e Stopband (below 6 GHz or above 15 GHz): gain < 2 dB.

There are 14 design variables, the area Sc1,- -+, Scq of the
metal plates of the MIM capacitors C1, - - -, C4 and the number
of turns nzq,- -, nro of the spiral inductors Ly, - --, Lig. As
a first step, a nominal design optimization using neural network
was carried out reducing the objective function of (15) from
6.7 to —0.15, all specifications being satisfied. Table III lists
the 14 design variables before and after minimax optimiza-
tion. In Fig. 10, the gain and input VSWR of the amplifier
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Fig. 8. The seven-transmission-line example. Percentage errors between
signal delays predicted from the neural network model and that from exact
simulation for 100 randomly generated sets of samples not used for training.

using neural network models before and after optimization
are compared. To verify the optimization solution, the same
parameters in Table III were used to simulate the X-band
amplifier with the Khatibzadeh and Trew model, which is a
much more complex model. We found all specifications being
satisfied as illustrated in Fig. 11.

In the second step, yield optimization using !y centring
algorithm as described in Section IV is performed with the
minimax nominal design as a starting point. There are 37
statistical variables including the neural network inputs gate
length, gate width, channel thickness, and doping density
of the MESFET’s, as well as the geometrical parameters of
the passive elements, namely, the conductor width Wy, and
spacing Sp of the ten spiral inductors Li,Ly---, Lyg, the
thickness d of the dielectric film for all MIM capacitors,
and the area Sc1,- -, Scs of the metal plates of the MIM
capacitors C, - - -, C4. The distributions for these 37 statistical
variables are listed in Table IV. The correlation matrix between
the three sets of MESFET parameters in [1] is used. The
yield after minimax nominal design optimization was 26%
with the neural network model and 32% with the Khatibzadeh
and Trew model. The CPU time used for the Monte Carlo
sweeps was 1 h and 30 min for the neural network approach
and 40 h 34 min for the Khatibzadeh and Trew model,
i.e., our approach is about 30 times faster. At the solution
of yield optimization using neural network, the yield was
improved to 58%. To verify this solution, we performed Monte
Carlo analysis using Khatibzadeh and Trew model, the yield
was 39%. Thus validity of the neural network approach was
confirmed. The solution is given in Table V. The Monte
Carlo sweeps before and after yield optimization are shown
in Fig. 12. Yield optimization with 50 outcomes using neural
network model took 50 min CPU time per iteration on a
Sun SPARCstation 2. The corresponding CPU time using the
Khatibzadeh and Trew model with quadratic model [10] is
4 h and 14 min. Table VI summarizes the CPU speedup
achievement.
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Fig. 9. Circuit diagram of an X-band amplifier.
TABLE IV

DISTRIBUTIONS FOR STATISTICAL VARIABLES, AFTER [1]

Variable Mean Deviation (%) | Variable Mean Deviation (%)
Nai1/m?) 1.0 x 10%° 7.0 d (pm) 0.1 4.0
L(pm) 1.0 3.5 Sci(pm?)  326.8 3.5
a(pum) 0.3 3.5 Sca:(pm?) 20224 3.5
W (um) 300 2.0 Sci(pm?)  218.2 3.5
Wy (um) 20 3.0 Sci(um?)  352.2 3.5
Sp(um) 10 3.0
TABLE V
DESIGN VARIABLES FOR YIELD OPTIMIZATION
Design Before After Design Before After
Variable  Optimization Optimization | Variable Optimization Optimization
Sci(pm?) 272.8 232.2 LA 3.49 3.58
Sc2(pm?) 2001.5 2006.9 nis 2.31 2.38
Scs(pm?) 244.4 277.8 nie 2.47 2.49
Sca(pm?) 343.8 346.1 ner 2.74 2.72
npy 3.50 3.55 Nrs 2.47 2.49
Nra 3.76 3.73 Nog 2.71 2.73
N3 2.91 2.99 NIt 2.98 3.00
TABLE VI
SUMMARY OF CPU COMPARISON
Application Khatibzadeh & Trew | Neural Network | Speed-up
Model Model ratio
Optimization 7 min 8 sec 1 min 6 sec 6
Monte Carlo 40 hours 34 min 1 hour 30 min 30
Yield Optimization 4 hours 14 min 50 min 5

VII. CONCLUSION

In this paper we have presented a nontraditional approach
to microwave circuit analysis, optimization, and statistical
design featuring neural network models. The results from our

work have demonstrated the feasibility and the efficiency of
using neural networks for physics-based device modeling. A
systematic description of neural network and its integration
with circuit simulations has been presented.
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Fig. 10. Gain and input VSWR of the X -band amplifier with neural network
models before (—-—) and after (—) nominal design optimization.
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Fig. 11. Gain and input VSWR of the X -band amplifier with Khatibzadeh
and Trew models before (—-~) and after (—) nominal design optimization.

By exploiting the flexibility and generality of the neural
network model, we have demonstrated its use for device and
circuit-level modeling as well. Even though a neural network
model has no embeded electrical or physics equations, we have
shown its capability to relate the circuit outputs to parameters
at any level, e.g., electrical, physical, or both. In addition,
its capability of learning from abstract data means it has the
potential to model different types of devices without changing
formulas.
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Fig. 12. Monte Carlo sweep of gain and input VSWR versus frequency
(GHz) of the X -band amplifier using neural network models before opti-
mization (a) gain (b) input VSWR, and after optimization (c) gain (d) input
VSWR.
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